2016年代表性论文发表

2016-12-30 15:49:23    来源:系统管理员

2016年代表性论文
序号 论文名称 期刊 时间 作者
1 PurTreeClust: A Purchase Tree Clustering Algorithm for  Large-scale Customer  Transaction Data IEEE International Conference on Data Engineering,  2016 陈小军 
2 Subspace Weighting Co-Clustering of Gene Expression Data  The 27th International Conference on Genome Informatics, 2016  2016  陈小军 
4 Stratified Over-sampling Bagging for Random Forests on Imbalanced Data  PAKDD 2016, PAISI 2016, LNCS 9650, pp. 63–72, 2016  2016  陈小军 
5 一种带约束条件的购物篮分析方法  计算机技术与发展  2016 陈小军 
6 Online Multi-Instance Multi-Label Learning for Protein Function Prediction  BIBM, 2016 2016 陈小军 
7 Big data analytics on Apache Spark  International Journal of Data Science and Analytics, 2016 2016 陈小军 
8
Detecting Review Spammer Groups
 
AAAI, 2017 2016 陈小军 
9 Attention-based LSTM for Target-dependent Sentiment Classification  AAAI, 2017 2016 陈小军 
10  When Big Data Meets Software-defined Networking (SDN):SDN for Big Data and Big Data for SDN   IEEE Network 2016 崔来中 
12 Adaptive Differential Evolution Algorithm with Novel Mutation  Computers & Operations Research, Vol. 67 2016 崔来中 
13 A video recommendation algorithm based on the combinationof video content and social network   Concurrency and Computation: Practice and Experienceonline  2016 崔来中 
15 Firefly algorithm with adaptive control parameters  Soft Computing, online  2016 崔来中 
16 A Comprehensive Trust-Based Item Evaluation Model for Recommendation in Social Network  ISCC 2016  2016 崔来中 
18 Dynamic Online HDP model for discovering evolutionary topics from Chinese social texts  Neurocomputing, 171, 2016, 412-424    2016  傅向华 
19 Learning distributed word representation with multi-contextual mixed embedding  Knowledge-Based Systems 106 (2016) 220-230  2016 傅向华 
20 Long Short-term Memory Network over Rhetorical Structure Theory for Sentence-level Sentiment Analysis  Proceedings of The 8th Asian Conference on Machine Learning, pp. 17-32, 2016  2016 傅向华 
21 Improving Distributed Word Representation and Topic Model by Word-Topic Mixture Model  Proceedings of The 8th Asian Conference on Machine Learning, pp. 190-205, 2016  2016 傅向华 
22 Exploring A Trust Based Recommendation Approach for Videos in Online Social Network  Journal of Signal Processing System    2016  傅向华 
23 A video recommendation algorithm based on the combination of video content and social network  Concurrency and Computation Practice and Experience  2016 傅向华 
24 A novel multi-objective evolutionary algorithm for recommendation systems  Journal of Parallel and Distributed Computing  2016 傅向华 
25 云计算工程  人民邮电出版社  2016.3 毛斐巧
26 Location Aware Keyword Query Suggestion Based on Document Proximity  IEEE Trans. Knowl. Data Eng. 28(1): 82-97 (2016)  2016 吴定明
27 Textually Relevant Spatial Skylines  IEEE Trans. Knowl. Data Eng. 28(1): 224-237 (2016)  2016 吴定明
28 A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters  CIKM 2016: 2095-2100  2016 吴定明
29 Location aware keyword query suggestion based on document proximity  ICDE 2016: 1566-1567  2016 吴定明

相关论文发表

博士生导师

  • 黄哲学

    黄哲学

    黄哲学 广东省领军人才 深圳大学特聘教授 国家信息中心大数据研究院院长 深圳大学大数据与应用研究所所长
  • 黄哲学

    PHILIPPE FOURNIER-VIGER

    I got my Ph.D from the U. of Quebec in Montreal (2010). Then, I worked at U. of Moncton, Canada (2011-2015) and Harbin Institute of Techn. (2015-2021). I am associate editor-in-chief of Applied Intelligence (SCI, Q1) and editor-in-chief of Data Science and Pattern Recognition. I have founded the SPMF data mining library, cited in more than 1,000 papers. Research interests:Data Mining, Big Data, Artificial Intelligence, Pattern Mining, Itemset Mining, Graph Mining, Sequence Prediction.
  • 黄哲学

    王熙照

    王熙照,博士,教授,博士生导师,IEEE Fellow,Springer杂志Machine Learning and Cybernetics主编。 1998年毕业于哈尔滨工业大学计算机系,获工学博士学位(计算机应用专业);1998年至2001年赴香港理工大学计算学系合作研究,任研究员(Research Fellow);2000年10月至2014年3月任河北大学数学与计算机学院院长,2007年10月至2014年3月任河北省机器学习与计算智能重点实验室主任;2013年9月至11月加拿大Simon Fraser大学访问教授(Visiting Professor),2013年12月至2014年1月加拿大Alberta大学访问教授;2014年7月至9月澳大利亚New South Wales大学访问教授;2014年3月至今任深圳大学计算机与软件学院教授、大数据研究所副所长。

科研项目

联系我们
0755-2653 0821