16

2018-10

201805期 Relating symbolic computations to numeric computations

来源:系统管理员     浏览次数:

Title:      Relating symbolic computations to numeric computations

Speaker: Professor Dr. Victor Selivanov

Time2:30-3:30 PM, Thursday March 15, 2018

LocationRoom 623, Big Data Institute, College of Computer Science & Software Engineering, Shenzhen University

Abstract.

The algorithms used in mathematics-oriented software can be divided into two big classes:  symbolic algorithms which aim to find precise solutions, and approximate algorithms which aim to find “good enough” approximations to precise solutions. The symbolic algorithms are implemented e.g. in computer algebra systems or SMT-solvers while the approximate algorithms - in numerical mathematics packages. The both classes of algorithms are widely used in applications and in mathematical research. The symbolic algorithms correspond well to computations on discrete structures (with mathematical foundations in the classical computability and complexity theory) while the approximate algorithms - to computations on continuous structures (with mathematical foundations in the field of computability and complexity in analysis evolving under the slogan “Exact real computation”).

An important idea relating the both classes of algorithms is to look for approximate solutions to a numerical problem with guaranteed precision. Finding such a solution is of crucial importance for safety-critical applications but it often requires much additional work because it sometimes needs a sophisticated algorithm and careful estimations of approximations made during the computation. In many cases the statement of a guaranteed-precision version of some problem on a continuous structure (which requires numerical mathematics and/or computable analysis) reduces it to a problem on a discrete structure which enables to apply the classical computability and complexity theory (sometimes called bit complexity). The bit complexity of an algorithm is fundamental because it estimates the amount of computational resources needed to implement the algorithm on a computing device.

In this talk we discuss some recent results (joint with Svetlana Selivanova) on the bit complexity of finding guaranteed precision solutions for Cauchy and boundary-value problems for symmetric hyperbolic systems of PDEs.

Biography

Professor Dr. Victor Selivanov is a Chief Research Fellow at A.P. Ershov of Informatics Systems (Siberian Branch of Russian Academy of Sciences) and professor of Novosibirsk State University. He is the leader of a team which recently won (together with 5 other teams) a national competition for creating a Regional Mathematical Center. The Center is soon to be established at Kazan Federal University. He was the founding head of department of Informatics and Discrete Mathematics at Novosibirsk Pedagogical University (1991-2009). He had visiting professor positions at universities of Paris-7, Wuerzburg (Germany), Siegen (Germany) and several visiting research positions in Europe. He was/is the coordinator of a Russian team in EU Marie Curie collaboration projects “Computable Analysis” (2012-2015) and “Computing with Infinite Data” (2017-2020). 

Professor Selivanov is known for his contributions to several parts of Computation Theory (computability, complexity, automata), Mathematical Logic and Descriptive Set Theory. He published over 100 refereed papers in prestigious journals and conference proceedings. He was PC member or organizer of several international conferences, including 6 workshops at Leibniz International Center for Computer Science in Dagstuhl (Germany).

相关论文发表

博士生导师

  • 黄哲学

    黄哲学

    黄哲学,瑞典皇家理工学院博士、深圳大学特聘教授、博士生导师,深圳大学大数据技术与应用研究所所长、大数据系统计算技术国家工程实验室副主任,首批广东省领军人才、深圳孔雀计划高层次人才,斯坦福大学全球“终身科学影响力排行榜”前2%顶尖科学家。符号数据快速聚类算法研究的开拓者,发表了k-modes等一系列著名聚类算法,被纳入国内外教科书和专著,进入软件产品。发表学术论文250多篇,主要论文被引用超万次。领导开发了全球首个面向算力网络的多数据中心大数据协同计算系统Octopus,最近获深圳第二十五届中国国际高新技术成果交易会“优秀产品奖”和“华为杯”第五届中国研究生人工智能创新大赛“一等奖”。
  • 黄哲学

    崔来中

    2007年6月于吉林大学获工学学士学位,同年被免试推荐直接攻读博士研究生,2012年6月于清华大学获计算机科学与技术博士学位。研究领域包括:下一代互联网体系结构、软件定义网络、边缘计算、大数据分析、机器学习和智能计算。国际电子工程师学会高级会员(IEEE Senior Member),中国计算机学会高级会员(CCF Senior Member),人工智能学会(CAAI)会员,CCF互联网专委会常委,CCF大数据专家委员会委员、CCF区块链专委会委员,CAAI知识工程与分布智能委员会副秘书长。担任SCI期刊《International Journal of Machine Learning and Cybernetics》、《International Journal of Bio-Inspired Computation 》和《Ad Hoc and Sensor Wireless Networks》的副编辑/编委。已主持国家重点研发计划课题、国家自然科学基金,广东省自然科学基金,广东省育苗工程,深圳市基础研究计划项目等项目10多项。已在国内外重要期刊以及国际会议上发表SCI/EI检索论文80余篇。《计算机网络》课程负责人,课程入选广东省一流本科课程。入选广东省青年珠江学者,深圳市优青、深圳市高层次人才和深圳大学“荔园优青”人才培养计划。
  • 黄哲学

    陈梓楠

    陈梓楠(博士,国家海外优青,IEEE会员,ACM会员)现在担任深圳大学计算机与软件学院特聘教授。在研期间一共发表了顶级会议和期刊将近30篇论文,其中CCF A类论文有19篇(第一作者有12篇),主持了国家自然科学优秀青年(海外)项目1项和国家自然科学青年基金项目1项。此外,陈老师也是各大国际会议(包括:VLDB 2022 - 2024 (demo track)、VLDB 2025 (research track)、SIGKDD 2024 、ICDE 2022和2024、EDBT 2023、IJCAI 2020、DASFAA 2021 - 2024和WISE 2019 - 2024)和国际期刊(包括:VLDBJ、TKDE、AIJ、IEEE Transactions on Computers (TC)、WWWJ、 TSAS 、TNSE、PR Journal、DKE、JCST、The Journal of Supercomputing等等)的审稿人,并担任MDM 2021 - 2024的会议论文集主席 (proceedings chair)。

科研项目

联系我们
0755-2653 0821